A two-tiered mechanism of EGFR inhibition by RALT/MIG6 via kinase suppression and receptor degradation
نویسندگان
چکیده
Signaling by epidermal growth factor receptor (EGFR) must be controlled tightly because aberrant EGFR activity may cause cell transformation. Receptor-associated late transducer (RALT) is a feedback inhibitor of EGFR whose genetic ablation in the mouse causes phenotypes due to EGFR-driven excess cell proliferation. RALT inhibits EGFR catalytic activation by docking onto EGFR kinase domain. We report here an additional mechanism of EGFR suppression mediated by RALT, demonstrating that RALT-bound EGF receptors undergo endocytosis and eventual degradation into lysosomes. Moreover, RALT rescues the endocytic deficit of EGFR mutants unable to undergo either endocytosis (Dc214) or degradation (Y1045F) and mediates endocytosis via a domain distinct from that responsible for EGFR catalytic suppression. Consistent with providing a scaffolding function for endocytic proteins, RALT drives EGFR endocytosis by binding to AP-2 and Intersectins. These data suggest a model in which binding of RALT to EGFR integrates suppression of EGFR kinase with receptor endocytosis and degradation, leading to durable repression of EGFR signaling.
منابع مشابه
Type I γ Phosphatidylinositol Phosphate 5-Kinase i5 Controls the Ubiquitination and Degradation of the Tumor Suppressor Mitogen-inducible Gene 6.
Mitogen-inducible gene 6 (Mig6) is a tumor suppressor, and the disruption of Mig6 expression is associated with cancer development. Mig6 directly interacts with epidermal growth factor receptor (EGFR) to suppress the activation and downstream signaling of EGFR. Therefore, loss of Mig6 enhances EGFR-mediated signaling and promotes EGFR-dependent carcinogenesis. The molecular mechanism modulating...
متن کاملRegulation of EGFR trafficking and cell signaling by Sprouty2 and MIG6 in lung cancer cells.
The duration and specificity of epidermal growth factor receptor (EGFR) activation and signaling are determinants of cellular decision processes and are tightly regulated by receptor dephosphorylation, internalization and degradation. In addition, regulatory proteins that are upregulated or activated post-transcriptionally upon receptor activation may initiate feedback loops that play crucial r...
متن کاملRegulation of epidermal growth factor receptor signalling by inducible feedback inhibitors.
Signalling by the epidermal growth factor receptor (EGFR) controls morphogenesis and/or homeostasis of several tissues from worms to mammals. The correct execution of these programmes requires the generation of EGFR signals of appropriate strength and duration. This is obtained through a complex circuitry of positive and negative feedback regulation. Feedback inhibitory mechanisms restrain EGFR...
متن کاملLoss of MIG6 Accelerates Initiation and Progression of Mutant Epidermal Growth Factor Receptor-Driven Lung Adenocarcinoma.
UNLABELLED Somatic mutations in the EGFR kinase domain drive lung adenocarcinoma. We have previously identified MIG6, an inhibitor of ERBB signaling and a potential tumor suppressor, as a target for phosphorylation by mutant EGFRs. Here, we demonstrate that MIG6 is a tumor suppressor for the initiation and progression of mutant EGFR-driven lung adenocarcinoma in mouse models. Mutant EGFR-induce...
متن کاملInhibition of the EGF Receptor by Binding to an Activating Kinase Domain Interface
Members of the epidermal growth factor receptor family (EGFR/ERBB1, ERBB2/HER2, ERBB3/HER3 and ERBB4/HER4) are key targets for inhibition in cancer therapy. Critical for activation is the formation of an asymmetric dimer by the intracellular kinase domains, in which the carboxy-terminal lobe (C lobe) of one kinase domain induces an active conformation in the other. The cytoplasmic protein MIG6 ...
متن کامل